Filomat 29:1 (2015), 155–157 DOI 10.2298/FIL1501155B

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Non-Equivalence of τ -Ultracompactness and τ -Boundedness

Buras Boljiev

Insitute of mathematics and CS, Univerity of Latvia, Raina Bulv. 29, Riga LV-1459, Latvia

Abstract. The main result presented here is a solution to the following problem of V. Saks: Does there exist $\mathfrak{M} > \aleph_0$ and a Hausdorff \mathfrak{M} -ultracompact space which is not \mathfrak{M} -bounded? The main result is given in a stronger form than the problem suggests itself: For each infinite cardinal τ there is a Hausdorff τ -ultracompact not τ -bounded space of density τ .

In [1] A. Bernstein introduced the following definitions: let $p \in \beta \omega \setminus \omega$ be a free ultrafilter on ω , the (discrete space) of positive integers. Now let $(x_n : n \in \omega)$ (for short (x_n)) be a sequence of points in a topological space X and $x \in X$. Then x is a p-limit point of (x_n) provided that for each neighborhood U of x the set { $n \in \omega : x_n \in U$ } belongs to p, in this case we write $x = p - \lim x_n$. If every sequence in X has a p-limit point then X is called p-compact. Each infinite cardinal is identified with the initial ordinal of the same cardinality.

V. Saks [2] generalizes the notion of a *p*-limit point to transfinite sequences in the following way: let τ be an infinite cardinal; if $p \in \beta \tau \setminus \tau$ is a free ultrafilter on τ (with the discrete topology) and $(x_{\alpha} : \alpha \in \tau)$ (for short (x_{α})) is a τ -sequence in a space *X*, then $x \in X$ is a *p*-limit point of (x_{α}) , denoted by $x = p - \lim x_{\alpha}$, if for each neighborhood *U* of *x*, { $\alpha : x_{\alpha} \in U$ } $\in p$ and we can say, in this case, that (x_{α}) *p*-converges to *x*. Saks further extends *p*-compactness for any ultrafilter $p \in \beta \tau \setminus \tau$ where a space *X* is *p*-compact if any τ -sequence in *X* has a *p*-limit point. He proves there that in the class of regular spaces the notions of τ -boundedness and τ -ultracompactness are equivalent for any infinite cardinal τ , where τ -boundedness means that the closure of any subset of cardinality not exceeding τ is compact and τ -ultracompactness means that *X* is *p*-compact for any $p \in \beta \tau \setminus \tau$. In case of $\tau = \aleph_0$ we obtain the notions of ultracompactness and \aleph_0 -boundedness which are not equivalent in the class of Hausdorff spaces as demonstrates an example in [2] but the space in this example is not separable so V. Saks asks there: Does there exist a separable Hausdorff ultracompact space which is not compact? The positive answer to the problem is in [4] and the theorem 3 in the present article covers not only this result but also give a positive answer in a stronger form to another question of V. Saks [2]: Does there exist $\mathfrak{M} > \aleph_0$ and a Hausdorff \mathfrak{M} -ultracompact space which is not \mathfrak{M} -bounded?

A. P. Kombarov introduced in [3] the notion of a *p*-sequential space for $p \in \beta \omega \setminus \omega$ and this notion was extended for any $p \in \beta \tau \setminus \tau$ by L. Kočinac [5] in the context of chain-net spaces but for our goals we prefer here to use the name which offered A. P. Kombarov: a space *X* is *p*-sequential if for any nonclosed $A \subset X$ there are some τ -sequence $(x_{\alpha}) \subset A$ and a point $x \notin A$ such that $x = p - \lim x_{\alpha}$. In this case we can say that $(x_{\alpha}) p$ -converges to *x*.

²⁰¹⁰ Mathematics Subject Classification. 54A10, 54A30.

Keywords. p-compact; *p*-sequential; *τ*-ultracompact; *τ*-bounded spaces.

Received: 14 September 2014; Accepted: 16 December 2014

Communicated by Dragan Djurcic

The research is supported by ESF project 2013//0024/1DP/1.1.1.2.0/13/APIA /VIAA/045

Email address: boljievb@mail.ru, buras.boljiev@lumii.lv(Buras Boljiev)

Let (X, γ) be a topological space, $O \subset X$ and $p \in \beta \tau \setminus \tau$, then O is said to be *p*-sequentially open if $x = p - \lim x_{\alpha}$ for some $x \in O$ and some τ -sequence (x_{α}) imply $\{\alpha : x_{\alpha} \in O\} \in p$.

Let γ_p be the set of all *p*-sequentially open sets in (X, γ) . It is clear that the union of any number of *p*-sequentially open sets is again *p*-sequentially open and the intersection of a finite number of *p*-sequentially open sets is *p*-sequentially open. Obviously, each open set is *p*-sequentially open so we get the following statement.

Proposition 1. Let (X, γ) be a topological space, then the family γ_p forms a topology on X and $\gamma \subset \gamma_p$.

It is important to note that $x = p - \lim x_{\alpha}$ in γ implies $x = p - \lim x_{\alpha}$ in γ_p . Really, if we have $x \neq p - \lim x_{\alpha}$ in γ_p for some x and some τ -sequence (x_{α}) , then there exists some $W \in \gamma_p$ such that $x \in W$ and $\{\alpha : x_{\alpha} \in W\} \notin p$. Obviously that $x \neq p - \lim x_{\alpha}$ in γ too, otherwise for the sequentially open set W we would get that $\{\alpha : x_{\alpha} \in W\} \in p$ which is in contradiction with $\{\alpha : x_{\alpha} \in W\} \notin p$.

Proposition 2. Topological space (X, γ_p) is *p*-sequential.

Proof. Let *A* be a nonclosed subset in (X, γ_p) , then $O = X \setminus A$ is not open in (X, γ_p) , i.e. *O* is not *p*-sequentially open in (X, γ) which implies that there are some point $z \in O$ and some τ -sequence (z_α) *p*-converging to *z* such that $\{\alpha : z_\alpha \in O\} \notin p$ which implies that $\{\alpha : z_\alpha \in A\} \in p$. We put $x_\alpha = z_\alpha$ for $z_\alpha \in A$ and $x_\alpha = y$ for some $y \in A$ if $z_\alpha \notin A$. Now it is easy to verify that $z = p - \lim x_\alpha$ for a τ -sequence $(x_\alpha) \subset A$. So (X, γ_p) is a *p*-sequential space. \Box

As usually by symbol $t(X, \gamma)$ we denote the tightness of a topological space (X, γ)

Proposition 3. The intersection of any family of topologies each of tightness not greater than τ has the tightness not greater than τ too.

Proof. Let $\gamma = \bigcap \{\gamma_{\alpha} : \alpha < k\}$ where each γ_{α} is a topology on a set *X* such that $t(X, \gamma_{\alpha}) \leq \tau$ for any $\alpha < k$. For each $A \subset X$ we put $A_1 = \bigcup \{[A]_{\gamma_{\alpha}} : \alpha < k\}$. Suppose we have constructed A_{α} for any ordinal $\alpha < \beta$ where $\beta < \tau^+$. Now we construct A_{β} and there are two cases:

- 1. $\beta = \alpha_0 + 1$ for some α_0 then $A_\beta = (A_{\alpha_0})_1$.
- 2. β is a limit ordinal then $A_{\beta} = \bigcup \{A_{\alpha} : \alpha < \beta\}$.

Finally we put $A_{\tau^+} = \bigcup \{A_\alpha : \alpha < \tau^+\}$

Using the fact that $\tau \cdot \tau = \tau$ we can state that $[A]_{\gamma} = A_{\tau^+}$ and applying transfinite induction on ordinals $\alpha < \tau^+$ one can see that for any $z \in [A]_{\gamma}$ there is $B \subset A$ such that $|B| \le \tau$ and $z \in [B]_{\gamma}$ \Box

Proposition 4. The tightness of a p-sequential space is not greater than τ .

Proof. For each subset *A* of *X* let $A_1 = \{x : x = p - \lim x_\alpha \text{ for some } \tau\text{-sequence } (x_\alpha) \subset A\}.$

Like in the proof of the previous proposition we put $A_{\beta} = (A_{\alpha})_1$ for $\beta = \alpha + 1$ and for a limit ordinal β let $A_{\beta} = \bigcup \{A_{\alpha} : \alpha < \beta\}$. It is easily seen that $A_{\tau^+} = (A_{\tau^+})_1$ and thus $[A] = A_{\tau^+}$ which due to the $\tau \cdot \tau = \tau$ imply the required result. \Box

The topology γ_p is called a *p*-sequential leader of γ . Let $\gamma_{\tau} = \cap \{\gamma_p : p \in \beta \tau \setminus \tau\}$ i.e. γ_{τ} is the intersection of all *p*-sequential leaders in (*X*, γ). The following theorem is a corollary of the propositions 3 and 4.

Theorem 1. The tightness of a topological space (X, γ_{τ}) does not exceed τ .

Theorem 2. For a topological space $(X, \gamma) t(X, \gamma) \le \tau$ iff $\gamma = \gamma_{\tau}$.

Proof. We need only to prove the necessity, i.e. that the condition $t(X, \gamma) \leq \tau$ implies $\gamma = \gamma_{\tau}$. It is sufficient to demonstrate that $\gamma_{\tau} \subset \gamma$. To this end we take any nonopen set in the topology γ , say M. Then $A = X \setminus M$ is a nonclosed set in γ and there are some subset $B \subset A$ with $|B| \leq \tau$ and some point $y \in M$ such that $y \in [B]_{\gamma}$. Considering B as a τ -sequence (x_{α}) one can find some $q \in \beta \tau \setminus \tau$ such that $(x_{\alpha}) q$ -converges to y in γ . Then $(x_{\alpha}) q$ -converges to y in γ_{τ} to o. Since $\gamma_{\tau} \subset \gamma_{q}$ it follows that $(x_{\alpha}) q$ -converges to y in γ_{τ} . Thus M is not open in γ_{τ} implying $\gamma_{\tau} \subset \gamma$.

Theorem 3. Let (X, γ) be a Hausdorff compact topological space of density τ with tightness greater than τ . Then (X, γ_{τ}) is a Hausdorff τ -ultracompact not a τ -bounded space of density τ .

Proof. Let X_0 be a dense subset in X of power τ . From the proof of the theorem 2 it is clear that two closure operators $[]_{\gamma}$ and $[]_{\gamma_{\tau}}$ coincide on subsets of power no more than τ . So we can see that (X, γ_{τ}) is a τ -ultracompact space and it contains X_0 as its dense subset. Since $t(X, \gamma_{\tau}) \leq \tau$ then the topology γ_{τ} is strictly stronger than γ and hence (X, γ_{τ}) is not a compact space which in its turn implies that it is not τ -bounded. Thus (X, γ_{τ}) is a τ -ultracompact not a τ -bounded space of density τ . \Box

It is known that the Stone-Čech compactification of any discrete space of power $\tau \ge \aleph_0$ has a tightness more than τ so we get the following result.

Corollary 1. For every infinite cardinal τ there is a Hausdorff τ -ultracompact not a τ -bounded space space of density τ .

Corollary 2. The notions of τ -ultracompactness and τ -boundedness are not equivalent in the class of Hausdorff spaces.

Proposition 5. The topology γ_{τ} is the least one among all topologies of tightness not greater than τ and each containing the given topology γ .

Proof. Let σ be any topology with tightness not greater than τ and containing γ . Assume that A is a nonclosed set in σ . Then it is nonclosed in γ . Fix $x \in [X] \setminus X$ then there is some $B \subset A$, $|B| \leq \tau$ such that $x \in [B]_{\sigma}$ and consequently $x \in [B]_{\gamma}$. Now we can represent B as a τ -sequence q-converging in γ to x for some $q \in \beta \tau \setminus \tau$ and hence q-converging to x in γ_q . So this τ -sequence q-converges to x in γ_{τ} implying that A is a nonclosed set in γ_{τ} which proves that $\gamma_{\tau} \subset \sigma$. \Box

The closure operator in the topological space (X, γ_{τ}) can be described more clearly using the following τ -closure operator on (X, γ) : let $A \subset X$ then we put $[A]_{\tau} = \{x : \exists B \subset A \text{ such that } |B| \le \tau \text{ and } x \in [B]_{\gamma}\}$. This operator is well-known and generates some topology, say γ'_{τ} , of tightness not greater than τ with $\gamma'_{\tau} \supset \gamma$ and coinciding with the origin topology γ provided the tightness of the space (X, γ) does not exceed τ .

Proposition 6. In any topological space (X, γ) the topologies γ_{τ} and γ_{τ} coincide.

Proof. From the previous proposition we get that $\gamma_{\tau} \subset \gamma \prime_{\tau}$ but the converse inclusion can be obtained using the same arguments as in the proof of the proposition 5. \Box

References

- [1] A.R. Bernstein. A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185-193.
- [2] V. Saks. Ultrafilters invariant in topological spaces. Trans. Amer. Math. Soc. 1978. V.241., 79-97.
- [3] A. P. Kombarov. Compactness and sequentiallity with respect to a set of ultrafilters. Moscow Univ. Math. Bull. 40 (1985), 15-18.
 [4] B. A. Boljiev. On one class of spaces, containing metric spaces. Kyrgyz State Univ. Frunze, 1987., 1-24. Dep. in RNTL KSSR

16.11.87 N 320 (in Russian).[5] Lj. Kočinac. A generalization of chain-net paces, Publ. Inst. Math. (Beograd), 44 (58) (1988), 109-114.